Displaying items by tag: pozzalana
Titan Cement International buys Vezirhan pozzolana quarry
30 January 2024Türkiye: Titan Cement International (TCI) has acquired concession rights to the Vezirhan pozzolana quarry in East Marmara. The quarry will help TCI to expand its low-carbon cement production capacity. By 2030, the company aims to reduce its CO2 emissions by 35% from 1990 levels, and include 50% green products in its portfolio.
Titan Group Eastern Mediterranean regional director Christos Panagopoulos said “Access to Vezirhan quarry’s strong reserves potential and high-quality material will allow Titan to further broaden the portfolio of low-carbon cementitious products available to its customers. The quarry has access to a deep port and railway transport, facilitating both land and seaborne distribution across Titan's global locations.”
Group chief sustainability and innovation officer Leonidas Canellopoulos said “Being future-ready for a net zero world is more than just an ambition for Titan, and the acquisition of concession rights in Vezirhan is part of our solid roadmap that entails over 100 initiatives, covering the entire scope of our geographic operations and span of our value chain.”
Kenya: East African Portland Cement Company (EAPCC) has announced plans to build a new clinker plant in Kajaido. The Nation newspaper has reported that it will cost US$200m to build. EAPCC plans to use local pozzolana, along with limestone and coral transported from Kenya’s Coast Province, in cement production at the plant. The producer says that it will clarify the timeframes of the project in 2024.
Spain: Residents of Cartagena, Murcia, have protested Cemex’s plans to begin mining pozzolan at new sites locally. The Murcia Plaza newspaper has reported that the protestors are calling for a mining ban, in line with their interpretation of the area’s Rural Area of Special Environmental and Social Sensitivity designation.
India: Four UltraTech Cement cement products have received Environmental Product Declaration (EPD) certification. UltraTech Cement's ordinary Portland cement (OPC), Portland pozzolana cement (PPC), Portland slag cement (PSC) and Portland composite cement (PCC) all successfully underwent lifecycle assessment studies in line with EPD requirements.
The Aditya Birla subsidiary said that 70% of its cement sales consist of blended cement. It offers over 70 different GreenPro certified products across its range.
Unacem buys Cemento San Antonio grinding plant from CBB
04 January 2022Chile: Peru-based Unacem has bought CBB’s Cemento San Antonio grinding plant in Valparaíso region for US$30.8m. The deal also covers the nearby Popeta pozzolano deposit.
Melón seeks pozzolana supply for cement plants
29 December 2021Chile: Melón has filed an Environmental Impact Statement with the authorities in Santiago for a project to extract pozzolana at a site at Culiprán in Melipilla. The deposit has total reserves of 20Mt and an extraction rate of 0.4Mt/yr is anticipated, according to Minería Chilena. Pozzolana from the site would be used to supply Melón’s cement plants at La Calera and Ventanas
A short look at low carbon cement and concrete
01 April 2020Cement and concrete products with sustainability credentials have increased in recent years as societies start to demand decarbonisation. In spite of the recent drop in the European Union (EU) Emissions Trading Scheme (ETS) price, there has been a trend in recent years in the construction industry towards offerings with better environmental credentials. Indeed, this week’s position paper from Cembureau on a carbon border mechanism concerns directly the growth of these kinds of products within Europe. Typically, the higher profile projects have been slag cement or concrete implementations such as Hanson’s use of its Regen cement substitute in a London sewer project or David Ball Group’s Cemfree concrete in a road project also in the UK. In this short review we’ll take a selective look at a few of the so-called low carbon cement and concrete products currently available.
Table 1: Some examples of methods to reduce embodied CO2 in cement and concrete. Note - the product examples are selective. In some cases many other products are available.
Material | Type | Method | Product examples |
Cement | SCM cement | Lower clinker factor | Many products |
Cement | Limestone calcined clay cement | Lower clinker factor | LC3, FutureCem, Polysius activated clay, H-EVA |
Cement | Calcium silicate cement | Reduced process emissions | Solidia, Celitement |
Cement | Recycled concrete fines | Reduced lifecycle emissions | Susteno |
Cement | Geopolymer cement | Reduced process emissions | Vertua |
Cement | Calcium sulphoaluminate cements | Reduced process emissions | Many products |
Concrete | CO2 curing/mineralisation | Uses CO2 and reduces water usage | Solidia, CarbonCure Technologies |
Concrete | Recycled concrete coarse | Reduced lifecycle emissions | Evopact, EcoCrete, FastCarb |
Concrete | SCM concrete | Uses less or no cement | Cemfree, Carbicrete, Regen |
Concrete | Uses less cement in mix | Uses less cement | |
Concrete | Admixtures | Uses less cement | |
Concrete | Locally sourced aggregate / better supply chain logistics | Reduced transport emissions | |
Concrete | Geopolymer concrete | Uses no cement | E-Crete |
Concrete | Graphene concrete | Uses less cement | Concrene |
Concrete | Carbon offsetting | Separate offsetting scheme | Vertua |
Looking at cement first, the easiest way for many producers to bring a lower carbon product to market has been to promote cements made using secondary cementitious materials (SCM) such as granulated blast furnace slag or fly ash. These types of cements have a long history, typically in specialist applications and/or in relation to ease of supply. For example, cement producers in eastern India often manufacture slag cements owing to the number of local steel plants. However, cement producers have more recently started to publicise their environmental credentials as they reduce the clinker factor of the final product. Alongside this though, in Europe especially, a number of so-called low carbon cement producers have appeared on the scene such as EcoCem and Hoffman Green Technologies. These newer producers tend to offer SCM cement products or other low carbon ones built around a grinding model. It is likely that their businesses have benefitted from tightening EU environmental legislation. How far cement producers can pivot to SCM cement products is contentious given that slag and fly ash are finite byproducts of other industries that are also under pressure to decarbonise. Although it should be noted that other SCMs such as pozzolans exist.
As will be seen below a few of the methods to reduce embodied CO2 in cement and concrete can be used in both materials. SCMs are no exception and hold a long history in concrete usage. As mentioned above David Ball Group sells Cemfree a concrete product that contains no cement. Harsco Environmental, a minerals management company, invested US$3m into Carbicrete, a technology start-up working on a cement-free concrete, in late 2019.
Limestone calcined clay cements are the next set of products that are starting to make an appearance through the work of the Swiss-government backed LC3 project, more commercial offerings like FutureCem from Cementir and H-EVA from Hoffman Green Technologies and today’s announcement about ThyssenKrupp’s plans to fit the Kribi cement plant in Cameroon with its Polysius activated clay system. They too, like SCM cements, reduce the clinker factor of the cement. The downside is that, as in the name, the clay element needs to be calcined requiring capital investment, although LC3 make a strong case in their literature about how fast these costs can be recouped in a variety of scenarios.
Calcium silicate cements offer reduced process emissions by decreasing the lime content of the clinker lowering the amount of CO2 released and bringing down the temperature required in the kiln to make the clinker. Solidia offers its calcium silicate cement as part of a two-part system with a CO2 cured concrete. In the US LafargeHolcim used Solidia’s product in a commercial project in mid-2019 at a New Jersey paver and block plant. Solidia’s second core technology is using CO2 to cure concrete and reducing water usage. They are not alone here as Canada’s CarbonCure Technologies uses CO2 in a similar way with their technology. In their case they focus more on CO2 mineralisation. In Germany, Schwenk Zement backed the Celitement project, which developed a hydraulic calcium hydro silicate based product that does not use CO2 curing. Celitement has since become part of Schwenk Zement.
Solidia isn’t the only company looking at two complementary technologies along the cement-concrete production chain. A number of companies are looking at recycling concrete and demolition waste. Generally this splits into coarse waste that is used as an aggregate substitute in concrete and fine waste that is used to make cement. LafargeHolcim has Evopact for the coarse waste and Susteno for the fine. HeidelbergCement has EcoCrete for the coarse and is researching the use of fines. Closing the loop for heavy building material producers definitely seems like the way to go at the moment and this view is reinforced by the involvement of the two largest multinational producers.
Of the rest of the other low carbon cement methods detailed in table 1 these cover other non-Ordinary Portland Cement (OPC) such as geopolymer and calcium sulphoaluminate cements. The former are a type of alkali activated binder and generally lack common standards. The latter are similar to slag cements in that they are established specialist products with lower CO2 emissions than OPC.
With concrete when trying to make a low carbon product the first choice is whether to choose a low-carbon cement as the binder or even not to use cement at all in the case of Regen or Cemfree. From here the next step is to simply use less cement in a concrete mixture. There are a number of ways to do this from optimising aggregate gradation, following performance specifications more closely, using strength tests like maturity methods and generally adhering to quality control protocols better to deliver more consistency. Read the Mineral Production Association (MPA) publication Specifying Sustainable Concrete for more detail on this. Using concrete admixtures can also help make concrete more sustainable by improving quality and performance at construction sites through the use of plasticisers and accelerators, by decreasing embodied carbon through the use of water reducers and by improving the whole life performance of concretes. The use of locally-sourced aggregates is also worth noting here since it can reduce associated transport CO2 emissions.
More novel methods of reducing embodied CO2 emissions in concrete include the use of geopolymer concrete in the case of Zeobond Group’s E-Crete or adding graphene as Concrene does. Like geopolymer cements, geopolymer concretes are relatively new and lack common standards. Products like Concrene, meanwhile, remain currently at the startup level. Finally, if all else fails, offsetting the CO2 released by a cement or concrete product is always an option. This is what Cemex has done with its Vertua Ultra Zero product. The first 70% reduction in embodied CO2 is gained through the use of geopolymer cement. Then the remaining 30% reduction is achieved through a carbon offsetting scheme via a carbon neutral certification verified by the Carbon Trust.
As can be seen, a variety of methods exist for cement and concrete producers to reduce the embodied CO2 of their products and call them ‘low-carbon.’ For the moment most remain in the ‘novelty section’ but as legislators promote and specifiers look for sustainable construction they continue to become more mainstream. What has been interesting to note from this short study is that some companies are looking at multiple solutions along the production and supply chain whilst others are concentrating on single ones. The companies looking at multiple methods range from the biggest building material producers like LafargeHolcim and HeidelbergCement to smaller newer ones like Solidia and Hoffman Green Technologies. Also of note is that many of these products have existed already in various forms for a long time like SCM cements and concretes or the many ways concretes can be made more sustainable through much simpler ways such as changing aggregate sourcing or working more efficiently. In many cases once markets receive sufficient stimulus it seems likely that low carbon cement and concrete products will proliferate.
Global Cement is researching a market report on low carbon cement and concrete. If readers have any comments to make please contact us at This email address is being protected from spambots. You need JavaScript enabled to view it.
OYAK to invest in pozzolan extraction in Cape Verde
12 February 2020Cape Verde: Turkey’s OYAK is planning to invest in pozzolan extraction following a meeting between OYAK's Cement Concrete Paper Group chairman Suat Çalbiyik and prime minister Ulisses Correia e Silva. Mining activity has remained muted since Cabocem, an Italian company, closed in 2013, according to Sapo. OYAK has operations in the country via Portugal’s Cimpor, which it acquired in 2019.
Uganda: The Uganda government’s Committee on Natural Resources suspended pozzolano extraction at quarries in eastern Uganda on 14 November 2019. The Daily Monitor reported the cause of the suspension as pollution of water sources. Speaking at Tororo Cement’s Chemangal quarry, committee chair Kefa Kivanuka said that “The regulatory authorities were negligent,” and that activity at quarries was suspended until the completion of a damage assessment involving committee meetings with cement producers for the review of their pozzolano extraction licences. Besides Tororo Cement, Hima Cement, Kampala Cement and Kenya-based National Cement subsidiary Simba Cement all supply plants with pozzolano extracted in the region.
Natural pozzolan use in the US
03 July 2019Charah Solutions has been steadily building up its fly ash distribution business in recent years with an eye on the supplementary cementitious materials (SCM) market. This week it opened the third of its new series of SCM grinding plants, at Oxnard in California, US. The unit sticks out because it is focusing on grinding natural pozzolans. The plant will receive natural pozzolan by truck and rail and then use Charah’s patented grinding technology to produce pozzolan marketed under its MultiPozz brand. The previous plants in this series mentioned natural pozzolans but this is the first to promote it explicitly.
The change is potentially telling because global demand for granulated blast furnace slag (GBFS) outstrips supply. Both performance benefits and environmental regulations are pushing this. It’s a similar situation for fly ash, also driven by trends to close coal-fired power stations in some countries. As Charles Zeynel of SCM trading firm ZAG International explained in the March 2019 issue of Global Cement Magazine, “...volcanic pozzolans are a potential SCM of the future. This is gaining traction, but it’s slow progress at the moment. This will be the answer for some users in some locations.”
The problem though is that natural pozzolans are down the list of preferred SCMs for their chemical properties after silica fume, GBFS and fly ash. The first is expensive but the latter two were traditionally cheap and easy to obtain if a cement or concrete producer had access to a source or a distribution network. Natural pozzolans are very much subject to variations in availability.
It’s no surprise then that Charah is promoting natural pozzolans in a Californian plant given that state’s environmental stance. It’s unclear where Charah is sourcing their pozzolan from but they are not the only company thinking about this in the US. Sunrise Resources, for example, is working on the environmental permits for a natural pozzolan mine near Tonopah in Nevada. As it described in its company presentation, California and Nevada are the most affected states in the fly ash supply crisis because they are, “...at the end of the line when it comes to rail deliveries from power stations in central and eastern USA.” It also estimated that California used 0.9Mt of pozzolan in its cement production of which about 90% is fly ash. The state produced 9.6Mt in 2015. Other companies are also mining and distributing natural pozzolans in the US as the website for the National Pozzolan Association (NPA) lists. Although, if this line-up is comprehensive, then the field is still fairly select. Most of these companies are based in the west of the country.
One last thing to consider is that various groups are tackling a potential future lack of SCMs for the cement industry by making their own pozzolanic materials through the use of calcined clay. These groups include the Swiss-government backed LC3 project and Cementir’s Futurecem products. Using clay should bypass the supply issues with natural pozzolans but the cost of calcining it requires at the very least an investment to get started.
As concrete enthusiasts often point out, a variant of pozzolanic concrete was used by the Romans to build many of their iconic structures, some of which survive to the present day. To give the last word to the NPA, “What is old is new again: natural pozzolan is back!” If environmental trends continue and steel and coal plants continue to be shut then it might just be right.