
Displaying items by tag: LEILAC
Australia: Calix has reported the completion of a pre-front-end engineering and design (FEED) study of its Leilac-2 carbon capture and storage (CCS) study. Germany-based HeidelbergCement, Mexico-based Cemex and Portugal-based Cimpor assessed the study. The milestone clears the technology for industrial scale implementation at HeidelbergCement’s Hannover integrated cement plant in Germany. The installation aims to capture 100,000t/yr of CO2 at an installation cost of Euro23m (+/-30%). The final investment decision will follow after the completion of FEED in early 2022.
Cemex to participate in LEILAC 2 decarbonisation project
05 February 2021Germany: Mexico-based Cemex has announced its planned participation in Australia-based Calix and others’ LEILAC (Low Emissions Intensity Lime And Cement) 2 carbon capture and storage (CCS) project at HeidelbergCement’s Hanover cement plant in Lower Saxony. Cemex previously assisted the LEILAC partnership at its first installation at HeidelbergCement’s cement plant in Lixhe in Belgium. The company said that it will contribute to the technology's development utilising its gasification process expertise, leveraging its skills in alternative fuel (AF) consumption and computational fluid dynamic simulation design.
Global head of research and development Davide Zampini said, "Our participation in the LEILAC 2 project is another example of our continued efforts to deliver net-zero CO2 concrete products globally by 2050. We are determined to have a significant direct involvement in research and development efforts pursuing high impact technologies in carbon capture, use, and storage."
HeidelbergCement’s Hanover cement plant to host LEILAC 2 carbon capture and storage installation
03 February 2021Germany: HeidelbergCement, Australia-based Calix and a European consortium have chosen the Hanover cement plant in Lower Saxony for the second phase of the LEILAC (Low Emissions Intensity Lime And Cement) carbon capture and storage (CCS) project. The installation will capture 20% of the plant’s capacity or 100,000t/yr of CO2. The project will take place in three phases, with design completed by June 2021, a complete demonstration installation before the end of 2023 and project completion in 2025. The group previously installed a 25,000t/yr LEILAC CCS system at its Lixhe plant near Liege in Belgium, which completed its test phase in 2020.
Chair Dominik von Achten said, "The LEILAC technology has the potential to enable the cement and lime industries to efficiently capture their process emissions on an industrial scale. The pilot project in Hanover is one of several promising CO2 capture technologies that we are currently testing at full speed within the HeidelbergCement Group."
Innovation in Industrial Carbon Capture Conference 2020
29 January 2020If you needed a sign that the cement industry has become serious about carbon capture it was the presence of two organisations offering CO2 transport and storage capacity in northern Europe at last week’s Innovation in Industrial Carbon Capture Conference 2020 (IICCC). Both Norway’s Northern Lights and the Rotterdam CCUS (Project Porthos) were busy at their stands during the event’s exhibition. Meanwhile, Cembureau, the European Cement Association, said that it will work on finding other potential storage sites for CO2 and on identifying existing gas pipelines that could be converted. The industry is planning what to do about CO2 transport and storage.
As with the previous IICCC event in 2018 the heart of the programme was the Low Emissions Intensity Lime And Cement (LEILAC) project. Since then Calix’s 60m tall pilot Direct Separation Calciner unit has been built at the HeidelbergCement cement plant in Lixhe and has been tested since mid-2019. Early results look promising, with CO2 separation occurring, calcined material produced and the tube structure and mechanical expansion holding up. Problems with thermocouples failing, blockages and recarbonation at the base of the tube have been encountered but these are being tackled in the de-bottlenecking phase. Testing will continue well into 2020 and plans for the next demonstration project at another cement plant in Europe are already moving ahead. LEILAC 2 will see industry partners Cimpor, Lhoist, Port of Rotterdam and IKN join Calix, HeidelbergCement and other research partners to work together on a larger 0.1Mt/yr CO2 separation pilot scheduled for completion in 2025.
Alongside this HeidelbergCement presented a convincing vision of a carbon neutral future for the cement industry at the IICCC 2020. It may not be what actually happens but the building materials producer has a clear plan across the lifecycle chain of cement. It is researching and testing a variety of methods to capture CO2 process emissions, is looking at supply chains and storage sites for the CO2 and is working on recycling concrete as aggregates and cementations material via recarbonation. In terms of carbon capture technology, an amine-based industrial scale CCS unit looks likely to be built at Norcem’s Brevik plant in the early 2020s. HeidelbergCement’s other joint-research projects – direct separation and oxyfuel – are further behind, at the pilot and pre-pilot stages respectively. Each technology looks set to offer progressively better and cheaper CO2 capture as they come on line.
Or put another way, cement companies in Europe could build industrial scale amine-based carbon (CC) capture plants now. Yet the game appears to be to wait until the cost of CCS falls through new technology versus the rising emissions trading scheme (ETS) price of CO2. CC is expected to become economically feasible in a decade’s time, sometime in the 2030s. At which point there might be an upgrade boom as plants are retrofitted with CC units or new production lines are commissioned. Other ways of reducing the cement industry’s CO2 emissions, of course, are being explored by other companies such as further reducing the clinker factor through the use of calcined clays (LC3 and others), solar reactor or electric-powered kilns and more.
The usual problem of how the construction industry can cope with a higher cost of cement was acknowledged at IICCC 2020 but it is largely being worked around. Higher priced cement poses competitive issues for specifiers and construction companies but it is widely expected to result in price rises below 5% for most residential end users. In the short-term government policy such as requiring low carbon cement in state building projects could stimulate the market. The start of this process can be seen already with the use of slag cements in various infrastructure projects.
Hans Bergman, Head Unit ETS Policy Development at the Directorate-General for Climate Action (DG Clima) partly addressed the cost issue by talking about the EU Green Deal. The EU wants to meet its new targets but it also wants to let gross domestic product (GDP) rise whilst greenhouse emissions fall. The EU ETS is its principle vehicle for this but the commission is wary of changes, such as making modifications linked to CCS, in case it undermines the system. Discussions are ongoing as the work on the Green Deal continues.
IICCC was a wider forum beyond just what LEILAC is up to. To this extent the CC projects involve multiple partners, including those from other cement companies like Cemex and Tarmac (CRH) in LEILAC and Dyckerhoff (Buzzi Unicem), Schwenk Zement and Vicat in the oxyfuel project. The decarbonisation fair included representatives from Vicat’s FastCarb project and Polimi’s Cleanker. Speakers from the European Climate Foundation, Acatech, INEA, TCM, SINTEF and Lhoist were also present.
During one speaker discussion Calix was described as the 'Tesla' of industrial CC by one speaker, who said that, “…there is a genuine competitive opportunity for those bold enough to grasp it.” Calix’s managing director Phil Hodgson enjoyed the accolade but the point was that leading innovation or setting the agenda offers advantages. In the case of industrial CC for the cement industry, change feels a step closer.
Dalmia Cement takes steps towards carbon capture
25 September 2019Dalmia Cement threw down the gauntlet this week with the announcement of a large-scale carbon capture unit (CCU) at one of its plants in Tamil Nadu, India. An agreement has been signed with UK-based Carbon Clean Solutions Limited (CCSL) to use its technology in building a 0.5Mt/yr CCU. The partnership will explore how CO2 from the plant can be used, including direct sales to other industries and using the CO2 as a precursor in manufacturing chemicals. No exact completion date or budget has been disclosed.
The move is a serious declaration of intent from the Indian cement producer towards its aim of becoming carbon neutral by 2040. Dalmia has been pushing its sustainability ‘journey’ for several years now hitting targets such as reaching 6Mt of alternative raw materials usage in its 2018 financial year and reaching a clinker factor of 63% at the same time. In an article in the November 2018 issue of Global Cement Magazine it said it had achieved CO2 emissions of 526kg/t from its cement production compared to 578kg/t from other Indian members of the Cement Sustainability Initiative (CSI). In its eastern operations it had gone further to reach 400kg/t.
Using CCU is the next step to this progression but Dalmia’s approach is not without its caveats. Firstly, despite the size of the proposed project it is still being described as a ‘large-scale demonstration.’ Secondly, the destination of all that captured CO2, as mentioned above, is still being considered. CCSL uses a post-combustion capture method that captures flue gas CO2 and then combines the use of a proprietary solvent with a heat integration step. Where the capture CO2 goes is vital because if it can’t be sold or utilised in some other way then it needs to be stored, putting up the price. Technology provider CCSL reckons that its CDRMax process has a CO2 capture price tag of US$40/t but it is unclear whether this includes utilisation sales of CO2 or not.
The process is along similar lines to the Skyonic SkyMine (see Global Cement Magazine, May 2015) CCU that was completed in 2015 at the Capitol Cement plant in San Antonio, Texas in the US. However, that post-combustion capture project was aiming for 75,000t/yr of CO2. Dalmia and CCSL’s attempt is six times greater.
Meanwhile, Cembureau, the European cement association, joined a group of industrial organisations in lobbying the European Union (EU) on the Horizon Europe programme. It wants the budget to be raised to at least Euro120m with at least 60% to be dedicated to the ‘Global Challenges and European Industrial Competitiveness’ pillar. This is relevant in a discussion on industrial CO2 emissions reduction because the scheme has been supporting various European cement industry projects, including HeidelbergCement’s work with the Low Emissions Intensity Lime And Cement (LEILAC) consortium and Calix at its Lixhe plant in Belgium and its pilots in Norway. As these projects and others reach industrial scale testing they need this money.
These recent developments provide hope for the future of the cement industry. Producers and their associations are engaging with the climate change agenda and taking action. Legislators and governments need to work with the cement sector to speed up this process and ensure that the industry is able to cut its CO2 emissions while continuing to manufacture the materials necessary to build things. Projects like this latest from Dalmia Cement are overdue, but are very encouraging.
Belgium: Australia’s Calix says the Low Emissions Intensity Lime And Cement (LEILAC) consortium has successfully demonstrated CO2 separation with more than 95% purity at its pilot unit at HeidelbergCement’s cement plant in Lixhe. Technology provider Calix said that preliminary test runs have been completed on the pilot. The technology concept has been shown to work on both lime and cement meal, with calcination near to target levels and high purity CO2 successfully separated at the top of the reactor although not yet at full design capacity.
It added that it was still working on fixing commissioning issues. Testing will run until the end of 2020 to assess the risk of potential longer-term issues such as tube health and process robustness. In parallel, planning has commenced on the next scale-up of the technology, including conceptual design and engaging funding consortia.
Cement plays the waiting game
29 May 2019There were two main takeaways from the Global Future Cement Conference that took place in Brussels last week. Firstly, there are not any obvious alternatives to using cement and concrete. Secondly, serious at-scale commercial investment on capturing CO2 process emissions from clinker production is still waiting for the right economic conditions.
Graph 1: Embodied energy versus embodied CO2 of building materials. Source: Hammond & Jones, University of Bath, UK.
Although the conference was heavily focused on Europe, the graph above explains why the cement and concrete industries are sitting pretty right now in the face of mounting environmental activism. The sector may be responsible for 5 - 10% of annual CO2 emissions but, put bluntly, there is simply no alternative. As Karen Scrivner from the Ecole Polytechnique Fédérale de Lausanne (EPFL) explained during her presentation, concrete uses some of the most abundant minerals present on earth, notably silicon and calcium. Alternative chemistries are simply not backed up by available materials. The cement and concrete associations have strongly promoted the unique position by focusing on the whole lifecycle of building materials.
The energy and emissions research needs to be scrutinised much more closely but, if it’s correct, there is no way to maintain modern standards of living without concrete. And, judging from the response by the French public to a badly handled meagre carbon tax on diesel by the so-called Yellow Vest movement, whacking up the price of housing or infrastructure might go down badly, especially in developing countries.
Two immediate ‘outs’ presents themselves. Cement doesn't necessarily have to be made from clinker as Robert McCaffrey’s presentation reinforced (also given at the IEEE/IAS-PCA Cement Conference this year). Future research may find alternatives to clinker and wipe out the cement business in the process. Also, the graph above is based on per kilogramme amounts of each building material. It doesn’t indicate how much of each material is required to build things. Even if clinker-based building materials are irreplaceable, there is no reason why their market share might not decrease. This could have large consequences in a market already burdened by over-capacity.
Graph 2: Comparison of cost of carbon capture technology for the cement industry. Source: European Cement Research Academy (ECRA).
Solid research into carbon capture technology is proceeding apace, from the LEILAC project at HeidelbergCement’s Lixhe plant, to oxyfuel kiln development and other methods, as Jan Theulen from HeidelbergCement demonstrated in his presentation. Off-the-shelf technologies from other industries also exist ready to be used. Today, for example, Inventys has announced plans to test its own CO2 capture technology with Lafarge Canada. Yet there are no commercial-scale installations in Europe. most likely due to the price burden it would place on the end product.
With the European Union (EU) Emissions Trading Scheme (ETS) entering its fourth phase and the carbon price holding above Euro20/t the question is: when will the serious investment begin in Europe? Notably, more than a few major European cement equipment manufacturers attended the Global Future Cement Conference, yet none are offering mature products to capture CO2 emissions. Most or all have projects up their sleeves ready to be developed and sold but orders aren’t being received. The carbon price in Europe is the problem here. If it's too low then nothing happens outside of government subsidy. Too high and cement plants start being shut down because they become too expensive to run. To be fair to the cement sector other carbon emission mitigation strategies are being employed from alternative fuels usage to lowering the clinker factor and other methods but the endgame is based on reducing process emissions.
The challenge for the cement and concrete industry is to show legislators that their materials are essential and irreplaceable. They are doing this. The legislators then need to concoct ways of encouraging mass scale rollout of carbon emissions abatement technology without destroying the cement industry. This is far from certain right now. If nothing else it’s in governments’ interest to get this right because, as the Yellow Vest protests show, if they get it wrong their voters become angry. All of this is happening against the clock as CCU/S is required to get the cement industry past the 2050 2°C maximum warming target set by the Paris Agreement. In the meantime the cement industry is essentially in a holding position on the more far-reaching aspects of CO2 emissions mitigation. Its products are likely irreplaceable but its carbon capture technology has to be encouraged by governments. This means that, for most cement producers, waiting to see what happens next is the way forward.
The 3rd Future Cement Conference and Exhibition is scheduled to take place in Vienna, Austria in 2021
Belgium: The Low Emissions Intensity Lime And Cement (LEILAC) consortium partners and its external advisory board have held a ribbon-cutting ceremony at its pilot Direct Separation Calciner unit at the HeidelbergCement cement plant in Lixhe. The project started commissioning the unit in March 2019. Testing is now set to start to validate the performance of the pilot.
HeidelbergCement hosts ground breaking ceremony for Calix carbon capture pilot project at Lixhe cement plant
09 February 2018Belgium: HeidelbergCement has hosted a ground breaking ceremony for the Calix carbon capture pilot at CBR’s cement plant at Lixhe. The ceremony itself took place at the Liège Oupeye Water Treatment Plant near Liège as part of the inaugural Innovation in Industrial Carbon Capture Conference. The two-day event, which took place on 7 – 8 February 2018, was organised by the Low Emissions Intensity Lime And Cement (LEILAC) Consortium, a European Union (EU) Horizon 2020 backed research and innovation project.
Construction work on the pilot at the cement plant is scheduled to start imminently. The project will test Calix’s carbon capture technology for two years at an operational cement plant. The technology has previously been used in the magnesite calcining sector.
Over 130 delegates from industry, academia and government attended the conference. The agenda was designed to encourage discussion and knowledge sharing across key stakeholder groups with a strategic interest in innovation in carbon capture technology. As part of the programme, the wider challenges faced by the cement and lime sectors in Europe were also explored focusing on how EU industries can contribute to reaching climate change targets, the role of innovation and company entrepreneurship and a knowledge exchange fair on technology.
The LEILAC consortium, which consists of representatives from the lime and cement industries, technology and engineering providers and research institutes, has set up as an industrial project securing Euro12m in EU funding in order to demonstrate technology to reduce carbon emissions from cement and lime industries.